Estimation of net surface radiation using eddy flux tower data over a tropical mangrove forest of Sundarban, West Bengal
نویسندگان
چکیده
In this study, net surface radiation (Rn) was estimated using artificial neural network (ANN) and Linear Model (LM). Then, estimated Rn with both the models (ANN and LM) were compared with measured Rn from eddy covariance (EC) flux tower. The routinely measured meteorological variables namely air temperature, relative humidity and wind velocity were used as input to the ANN and global solar radiation as input to the LM. All the input data are from the EC flux tower. Sensitivity analysis of ANN with all the meteorological variables is carried out by excluding one by one meteorological variable. The validation results demonstrated that, ANN and LM estimated Rn values were in good agreement with the measured values, with root mean square error (RMSE) varying between 21.63 W/m2 and 34.94 W/m2, mean absolute error (MAE) between 17.93 W/m2 and 22.28 W/m2 and coefficient of residual mass (CRM) between –0.007 and –0.04 respectively. Further we have computed modelling efficiency (0.97 for ANN and 0.99 for LM) and coefficient of determination (R2 = 0.97 for ANN and 0.99 for LM) for both the models. Even though both the models could predict Rn successfully, ANN was better in terms of minimum number of routinely measured meteorological variables as input. The results of the ANN sensitivity analysis indicated that air temperatuere is the more important parameter followed by relative humidity, wind speed and wind direction.
منابع مشابه
Fire effects on net radiation and energy partitioning: Contrasting responses of tundra and boreal forest ecosystems
[1] The net radiation available to drive surface-atmosphere exchange is strongly influenced by albedo and surface temperature. Tower-based microclimatic and eddy covariance measurements in typical Alaskan black spruce and tundra ecosystems before and immediately after fire indicated a 10% decrease in net radiation over the burned spruce stand but a 12% increase in net radiation over the burned ...
متن کاملSpatial variation of Arsenic in the Estuarine Zone of Two Different Tropical Rivers
This study represents distribution of Arsenic in two different estuaries, one is Himalayan source and another is non-Himalayan source. Arsenic concentration in river water, pore water and ground water was found to be significantly higher in the Mahanadi estuary could be due to fringing mangrove than that of Hooghly-Saptamukhi estuary with thick mangrove ecosystem. Spatial variation of Arsenic i...
متن کاملSoil Moisture Estimation in Rangelands Using Remote Sensing (Case Study: Malayer, West of Iran)
Soil moisture is generally regarded as the limiting factors in rangeland production. Although many studies have been conducted to estimate soil moisture in semiarid areas, there is little information on mountainous rangelands in west of Iran. The present study aims to investigate the soil moisture estimation in rangelands as compared to the other land uses over a mountainous area in central Zag...
متن کاملModeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance
Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the ...
متن کاملPredicting leaf area index from scaling principles: corroboration and consequences.
Leaf area index (LAI) is a key biophysical variable in most process-based forest-ecosystem models. However, most such models require LAI as an input, typically obtained from empirical observations. We tested whether scaling principles based on trade-offs between single leaf and canopy properties could be effectively used to model LAI, thereby obviating the need for empirical observations. To do...
متن کامل